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Exercise 44

If f(r) = A(a® + 7“2)*%, where A is a constant, show that the solution of the biharmonic equation
described in Example 1.10.7 is

{r2+ (z+a)(2z +a)}

) = A T o P

Solution

The PDE we have to solve is the axisymmetric biharmonic equation,
Viu(r,z) =0, 0<r<oo, z>0,

subject to the boundary conditions,

(r,0) = f(r) = ——2—, 0<r<
u(r,0) = f(r) = , <r < oo,
CL2+T2
0
—u:O onz=0,0<r < oo,
0z

u(r,z) - 0o asr — oo.

Since 0 < r < oo, the Hankel transform can be applied to solve it. The zero-order Hankel
transform is defined as

Hof{u(r,z)} = u(k, z) = /000 rJo(kr)u(r, z) dr,

where Jy(kr) is the Bessel function of order 0. Hence, the radial part of the laplacian in
cylindrical coordinates transforms as follows.

0%u  10u 9.
7‘[0 {87“2 + 7"87"} = —K ’LL(K,,Z)

The partial derivative with respect to z transforms like so.
o™u d™u
Hod =— ¢ = —
oz dz"
V# is the laplacian operator squared. In cylindrical coordinates, the PDE takes the form

2 2\ 2
V4u:(V2)2u:<a L9 0 > u=0.

o "ror T 92

Take the zero-order Hankel transform of both sides of the PDE.

2 10 0%\
”“0{<arz+raﬁazz) “}2%0{0}

Use the relations above to transform the partial derivatives.

a2\’
<—HJ2 + d2’2> ’ll(fi, Z) =0
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Expand the operator acting on .

Distribute the operator.

(1)
The PDE has thus been reduced to a fourth-order homogeneous ODE with constant coefficients.
The standard procedure for solving it is to assume a solution of the form, & = eP?, and then
substitute it into the ODE to determine p.

. du
o = eP?

d*a d3t d*a
- =petr o T =pPelr o T =Pt o T = phel?
dz P a2z P a3 P a2~ P
Substituting these expressions into the ODE, we get

pleP* — 2k2p2eP? + k1eP? = 0.

Divide both sides by eP? to get an algebraic equation for p.

pt—2r%p* + k' =0
Factor the left side.

(p+8)(p—r)7?=0
Hence,

p = —k (multiplicity 2) p = & (multiplicity 2),
which means the solution to the ODE in equation (1) is
u(k,z) = Ci(k)e™ ™ + Ca(kr)ze” "% 4+ C3(k)e™* + Cy(k)ze™

(2)
Since (K, z) must remain bounded as z — oo, we require C3(x) = 0 and C4(x) = 0. To determine
Ci(k) and Cz(k), make use of the provided boundary conditions at z = 0. Take the zero-order
Hankel transform of both sides of them.

u(r,0) = ﬁ% — Ho{u(r,0)} = Hy {\/aQAW}
u(k,0) = %e*’“‘ (3)
?(T,O): — Ho{az}—Hg{O}
T x.0) =0 (4)
Setting z = 0 in equation (2) and using equation (3), we get

u(k,0) = Ci(k) = %e_m.

du

Taking the derivative of @(k, z) with respect to z, setting z = 0, and using equation (4), we get
d—(n,O) =Co(k)—Ae ™ =0 — COy(k) = Ae "
2
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With the constants determined, we now know .

A
u(k,z) = —e e 4+ Ae "ze V?
K

A
= (1 4 kz)e HEt)
K
All that’s left to do is to take the inverse Hankel transform of this to get u(r, z).
u(r, z) = Mg {als, 2)}
It is defined as ~
Ho ik, 2)} = / kJo(kr)u(k, z) dk,
0
S0

u(r, z) = / KJJ()(FJT)%(I + k2)e "EFD gy,
0

Cancel k and shuffle the terms in the integrand.
o
u(r,z) = / A1 + k2)e &) Jo (kr) dr
0
Split up the integral into two and bring the constants out in front of them.

u(r,z) = A/ e "=FD) Jo(kr) dk + ZA/ ke "FD) Jo(kr) dr
0 0

We can evaluate both these integrals from the known integral,

1

e " Jy(kr)dk = ———.
f et i = e

Differentiate both sides with respect to a.

0o a o0 a
_ —Ka - _ —Ka _
/0 (—r)e " Jo(kr)dK RO — /0 ke " Jo(kr) dk T a2
With these two integrals, we can obtain u(r, 2).

1 4 2A z+a
r2+ (z +a)? [ + (2 +a)?]3/2

u(r,z) =A

Multiply the numerator and denominator of the first fraction by 72 + (2 + a)? to get a common
denominator.

Alr? + (z +a)?] + zA(z + a)
(72 + (2 + a)?]3/2

Factor A and then factor z + a from the last two terms in the numerator to get the final result.

u(r,z) =

2+ (z+a)(22 + a)
[r2 + (2 + a)?]3/2

u(r,z) = A
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