Exercise 44

If $f(r)=A\left(a^{2}+r^{2}\right)^{-\frac{1}{2}}$, where A is a constant, show that the solution of the biharmonic equation described in Example 1.10.7 is

$$
u(r, z)=A \frac{\left\{r^{2}+(z+a)(2 z+a)\right\}}{\left[r^{2}+(z+a)^{2}\right]^{3 / 2}} .
$$

Solution

The PDE we have to solve is the axisymmetric biharmonic equation,

$$
\nabla^{4} u(r, z)=0, \quad 0 \leq r<\infty, z>0
$$

subject to the boundary conditions,

$$
\begin{aligned}
u(r, 0) & =f(r)=\frac{A}{\sqrt{a^{2}+r^{2}}}, \quad 0 \leq r<\infty, \\
\frac{\partial u}{\partial z} & =0 \quad \text { on } z=0,0 \leq r<\infty \\
u(r, z) & \rightarrow \infty \quad \text { as } r \rightarrow \infty
\end{aligned}
$$

Since $0 \leq r<\infty$, the Hankel transform can be applied to solve it. The zero-order Hankel transform is defined as

$$
\mathcal{H}_{0}\{u(r, z)\}=\tilde{u}(\kappa, z)=\int_{0}^{\infty} r J_{0}(\kappa r) u(r, z) d r,
$$

where $J_{0}(\kappa r)$ is the Bessel function of order 0 . Hence, the radial part of the laplacian in cylindrical coordinates transforms as follows.

$$
\mathcal{H}_{0}\left\{\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right\}=-\kappa^{2} \tilde{u}(\kappa, z)
$$

The partial derivative with respect to z transforms like so.

$$
\mathcal{H}_{0}\left\{\frac{\partial^{n} u}{\partial z^{n}}\right\}=\frac{d^{n} \tilde{u}}{d z^{n}}
$$

∇^{4} is the laplacian operator squared. In cylindrical coordinates, the PDE takes the form

$$
\nabla^{4} u=\left(\nabla^{2}\right)^{2} u=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial z^{2}}\right)^{2} u=0
$$

Take the zero-order Hankel transform of both sides of the PDE.

$$
\mathcal{H}_{0}\left\{\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial z^{2}}\right)^{2} u\right\}=\mathcal{H}_{0}\{0\}
$$

Use the relations above to transform the partial derivatives.

$$
\left(-\kappa^{2}+\frac{d^{2}}{d z^{2}}\right)^{2} \tilde{u}(\kappa, z)=0
$$

Expand the operator acting on \tilde{u}.

$$
\left(\frac{d^{4}}{d z^{4}}-2 \kappa^{2} \frac{d^{2}}{d z^{2}}+\kappa^{4}\right) \tilde{u}=0
$$

Distribute the operator.

$$
\begin{equation*}
\frac{d^{4} \tilde{u}}{d z^{4}}-2 \kappa^{2} \frac{d^{2} \tilde{u}}{d z^{2}}+\kappa^{4} \tilde{u}=0 \tag{1}
\end{equation*}
$$

The PDE has thus been reduced to a fourth-order homogeneous ODE with constant coefficients. The standard procedure for solving it is to assume a solution of the form, $\tilde{u}=e^{p z}$, and then substitute it into the ODE to determine p.

$$
\tilde{u}=e^{p z} \quad \rightarrow \frac{d \tilde{u}}{d z}=p e^{p z} \quad \rightarrow \frac{d^{2} \tilde{u}}{d z^{2}}=p^{2} e^{p z} \quad \rightarrow \quad \frac{d^{3} \tilde{u}}{d z^{3}}=p^{3} e^{p z} \quad \rightarrow \quad \frac{d^{4} \tilde{u}}{d z^{4}}=p^{4} e^{p z}
$$

Substituting these expressions into the ODE, we get

$$
p^{4} e^{p z}-2 \kappa^{2} p^{2} e^{p z}+\kappa^{4} e^{p z}=0 .
$$

Divide both sides by $e^{p z}$ to get an algebraic equation for p.

$$
p^{4}-2 \kappa^{2} p^{2}+\kappa^{4}=0
$$

Factor the left side.

$$
(p+\kappa)^{2}(p-\kappa)^{2}=0
$$

Hence,

$$
p=-\kappa(\text { multiplicity } 2) \quad p=\kappa(\text { multiplicity } 2),
$$

which means the solution to the ODE in equation (1) is

$$
\begin{equation*}
\tilde{u}(\kappa, z)=C_{1}(\kappa) e^{-\kappa z}+C_{2}(\kappa) z e^{-\kappa z}+C_{3}(\kappa) e^{\kappa z}+C_{4}(\kappa) z e^{\kappa z} . \tag{2}
\end{equation*}
$$

Since $\tilde{u}(\kappa, z)$ must remain bounded as $z \rightarrow \infty$, we require $C_{3}(\kappa)=0$ and $C_{4}(\kappa)=0$. To determine $C_{1}(\kappa)$ and $C_{2}(\kappa)$, make use of the provided boundary conditions at $z=0$. Take the zero-order Hankel transform of both sides of them.

$$
\begin{align*}
u(r, 0)=\frac{A}{\sqrt{a^{2}+r^{2}} \quad \rightarrow \quad \mathcal{H}_{0}\{u(r, 0)\}} & =\mathcal{H}_{0}\left\{\frac{A}{\sqrt{a^{2}+r^{2}}}\right\} \\
\tilde{u}(\kappa, 0) & =\frac{A}{\kappa} e^{-\kappa a} \tag{3}\\
\frac{\partial u}{\partial z}(r, 0)=0 \rightarrow \quad \mathcal{H}_{0}\left\{\frac{\partial u}{\partial z}\right\} & =\mathcal{H}_{0}\{0\} \\
\frac{d \tilde{u}}{d z}(\kappa, 0) & =0 \tag{4}
\end{align*}
$$

Setting $z=0$ in equation (2) and using equation (3), we get

$$
\tilde{u}(\kappa, 0)=C_{1}(\kappa)=\frac{A}{\kappa} e^{-\kappa a} .
$$

Taking the derivative of $\tilde{u}(\kappa, z)$ with respect to z, setting $z=0$, and using equation (4), we get

$$
\frac{d \tilde{u}}{d z}(\kappa, 0)=C_{2}(\kappa)-A e^{-\kappa a}=0 \quad \rightarrow \quad C_{2}(\kappa)=A e^{-\kappa a} .
$$

With the constants determined, we now know \tilde{u}.

$$
\begin{aligned}
\tilde{u}(\kappa, z) & =\frac{A}{\kappa} e^{-\kappa a} e^{-\kappa z}+A e^{-\kappa a} z e^{-\kappa z} \\
& =\frac{A}{\kappa}(1+\kappa z) e^{-\kappa(z+a)}
\end{aligned}
$$

All that's left to do is to take the inverse Hankel transform of this to get $u(r, z)$.

$$
u(r, z)=\mathcal{H}_{0}^{-1}\{\tilde{u}(\kappa, z)\}
$$

It is defined as

$$
\mathcal{H}_{0}^{-1}\{\tilde{u}(\kappa, z)\}=\int_{0}^{\infty} \kappa J_{0}(\kappa r) \tilde{u}(\kappa, z) d \kappa,
$$

so

$$
u(r, z)=\int_{0}^{\infty} \kappa J_{0}(\kappa r) \frac{A}{\kappa}(1+\kappa z) e^{-\kappa(z+a)} d \kappa .
$$

Cancel κ and shuffle the terms in the integrand.

$$
u(r, z)=\int_{0}^{\infty} A(1+\kappa z) e^{-\kappa(z+a)} J_{0}(\kappa r) d \kappa
$$

Split up the integral into two and bring the constants out in front of them.

$$
u(r, z)=A \int_{0}^{\infty} e^{-\kappa(z+a)} J_{0}(\kappa r) d \kappa+z A \int_{0}^{\infty} \kappa e^{-\kappa(z+a)} J_{0}(\kappa r) d \kappa
$$

We can evaluate both these integrals from the known integral,

$$
\int_{0}^{\infty} e^{-\kappa a} J_{0}(\kappa r) d \kappa=\frac{1}{\sqrt{r^{2}+a^{2}}}
$$

Differentiate both sides with respect to a.

$$
\int_{0}^{\infty}(-\kappa) e^{-\kappa a} J_{0}(\kappa r) d \kappa=-\frac{a}{\left(r^{2}+a^{2}\right)^{3 / 2}} \quad \rightarrow \quad \int_{0}^{\infty} \kappa e^{-\kappa a} J_{0}(\kappa r) d \kappa=\frac{a}{\left(r^{2}+a^{2}\right)^{3 / 2}}
$$

With these two integrals, we can obtain $u(r, z)$.

$$
u(r, z)=A \frac{1}{\sqrt{r^{2}+(z+a)^{2}}}+z A \frac{z+a}{\left[r^{2}+(z+a)^{2}\right]^{3 / 2}}
$$

Multiply the numerator and denominator of the first fraction by $r^{2}+(z+a)^{2}$ to get a common denominator.

$$
u(r, z)=\frac{A\left[r^{2}+(z+a)^{2}\right]+z A(z+a)}{\left[r^{2}+(z+a)^{2}\right]^{3 / 2}}
$$

Factor A and then factor $z+a$ from the last two terms in the numerator to get the final result.

$$
u(r, z)=A \frac{r^{2}+(z+a)(2 z+a)}{\left[r^{2}+(z+a)^{2}\right]^{3 / 2}}
$$

